78mÍþ¾Å¹ú¼Ê

ËÑË÷ º£±¨ÐÂÎÅ ÈÚýÌå¾ØÕó
  • ɽ¶«ÊÖ»ú±¨

  • º£±¨ÐÂÎÅ

  • ¹«¹²Íø¹Ù·½Î¢ÐÅ

  • ¹«¹²Íø¹Ù·½Î¢²©

  • ¶¶Òô

  • ÈËÃñºÅ

  • È«¹úµ³Ã½Æ½Ì¨

  • ÑëÊÓƵ

  • °Ù¼ÒºÅ

  • ¿ìÊÖ

  • Í·ÌõºÅ

  • ßÙÁ¨ßÙÁ¨

Ê×Ò³ >ÐÂÎÅ >ÐÂÎÅ

×ñÒåÄÄÀïÓдó»î£¬×ñÒåÄÄÀïÓдó»î¼¦Âô

2025-02-24 00:13:49
À´Ô´£º

ÉîÛÚÐÂÎÅÍø

×÷Õߣº

¸êçâÃ÷

ÊÖ»ú¼ì²ì

[R c?tur]

??????????@foreach ? recieved

@Burryeach ÏòÀÕÈõº¯ÊýµÄµãÒªÁìÂÛµÄÇóÈ¡

ÏòÀÕÈõº¯ÊýµÄµãÒªÁìÂÛµÄÇóÈ¡

ÎÒÃÇ¿ÉÒÔÀûÓõãÒªÁìÂÛÀ´ÇóÈ¡ÀÕÈõ¶àÏîʽÔÚÌض¨µãµÄÖµ»òÆäµ¼Êý¡£ÀýÈ磬ÀÕÈõ¶àÏîʽÔÚ $x=0$ ´¦µÄÖµ¿ÉÒÔͨ¹ýµÝ¹é¹«Ê½À´±í´ï¡£¼ÙÉèÅÌËãL_n(0)¡£ÎÒÃÇ¿ÉÒÔʹÓõݹé¹Øϵʽ£º

$$ nLn(x) = (2n - 1)xL{n-1}(x) - (n - 1)L_{n-2}(x) $$

µ± $x=0$ ʱ£¬´úÈëÉÏʽ£º

$$ nLn(0) = - (n - 1)L{n-2}(0) $$

ÓÉ´Ë¿ÉÒÔ»ñµÃµÝ¹é¹«Ê½£º

$$ Ln(0) = -\frac{n - 1}{n} L{n-2}(0) $$

Èç¹ûÒÑÖª $L0(0) = 1$ ºÍ $L1(0) = 0$£¬Ôò¿ÉÒÔÀûÓõݹ鹫ʽÖð²½ÅÌËã $L_n(0)$ µÄÖµ¡£ÀýÈ磺

  • $L2(0) = -\frac{2 - 1}{2} L0(0) = -\frac{1}{2} \times 1 = -\frac{1}{2}$
  • $L3(0) = -\frac{3 - 1}{3} L1(0) = -\frac{2}{3} \times 0 = 0$
  • $\vdots$

ÀàËƵØ£¬¿ÉÒÔ¼ÌÐøÅÌËã¸ü¸ß´ÎµÄÀÕÈõ¶àÏîʽÔÚ $x=0$ ´¦µÄÖµ¡£

ÎÒÃÇϵͳµÄ½éÉÜÁËÀÕÈõ¶àÏîʽµÄһϵÁлùÌìÐÔÖÊ£¬°üÀ¨Çкϴó¶¼ÀÕÈõ·½³Ì¡¢Õý½»ÐÔ¡¢µÝ¹é¹Øϵ¡¢Éú³Éº¯ÊýÒÔ¼°¾ßÌåµÄµãÒªÁìÂÛµÄÓ¦Óá£Í¨¹ýÕâЩÐÔÖʺÍÒªÁ죬¿ÉÒԱ㵱ÍÁµØËãºÍÓ¦ÓÃÀÕÈõ¶àÏîʽ£¬½â¾ö¿ÆѧºÍ¹¤³ÌÁìÓòÖеÄʵ¼ÊÎÊÌâ¡£

ÀÕÈõ¶àÏîʽ #ÀÕÈõº¯Êý #µãÒªÁìÂÛ

±êÇ©£ºÆ½»îÊÇʲôÒâ˼ʲôЧÀÍ º£¿ÚвèÆ·

Ôð±à£º¿Üº­Ñã

ÉóºË£ºÊÙѦ

ÉϺ£ÊÂÇéÊÒÅ®ÈËÄþ¾² ºÊÔó300Ò»´Î
Ïà¹ØÍƼö »»Ò»»»

Copyright (C) 2001-   dzwww.com. All Rights Reserved

ÐÂÎÅÐÅϢЧÀÍÐí¿ÉÖ¤ - ÒôÏñÖÆÆ·³öÊéÐí¿ÉÖ¤ - ¹ã²¥µçÊÓ½ÚÄ¿ÖÆ×÷¾­ÓªÐí¿ÉÖ¤ - ÍøÂçÊÓÌýÐí¿ÉÖ¤ - ÍøÂçÎÄ»¯¾­ÓªÐí¿ÉÖ¤

ɽ¶«Ê¡»¥ÁªÍø´«Ã½¼¯ÍÅÖ÷°ì  ÁªÏµµç»°£º**2  Î¥·¨²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º**0

³ICP±¸09023866ºÅ-1   ³¹«Íø°²±¸ 37010202000111ºÅ

Copyright (C) 2001- Dzwww   ³ICP±¸09023866ºÅ-1

ÍøÕ¾µØͼ