![]() |
ɽ¶«ÊÖ»ú±¨
º£±¨ÐÂÎÅ
¹«¹²Íø¹Ù·½Î¢ÐÅ
¹«¹²Íø¹Ù·½Î¢²©
¶¶Òô
ÈËÃñºÅ
È«¹úµ³Ã½Æ½Ì¨
ÑëÊÓƵ
°Ù¼ÒºÅ
¿ìÊÖ
Í·ÌõºÅ
ßÙÁ¨ßÙÁ¨
ÉîÛÚÐÂÎÅÍø
¸êçâÃ÷
ÊÖ»ú¼ì²ì
[R c?tur]
??????????@foreach ? recieved
@Burryeach ÏòÀÕÈõº¯ÊýµÄµãÒªÁìÂÛµÄÇóÈ¡
ÏòÀÕÈõº¯ÊýµÄµãÒªÁìÂÛµÄÇóÈ¡
ÎÒÃÇ¿ÉÒÔÀûÓõãÒªÁìÂÛÀ´ÇóÈ¡ÀÕÈõ¶àÏîʽÔÚÌض¨µãµÄÖµ»òÆäµ¼Êý¡£ÀýÈ磬ÀÕÈõ¶àÏîʽÔÚ $x=0$ ´¦µÄÖµ¿ÉÒÔͨ¹ýµÝ¹é¹«Ê½À´±í´ï¡£¼ÙÉèÅÌËãL_n(0)¡£ÎÒÃÇ¿ÉÒÔʹÓõݹé¹Øϵʽ£º
$$ nLn(x) = (2n - 1)xL{n-1}(x) - (n - 1)L_{n-2}(x) $$
µ± $x=0$ ʱ£¬´úÈëÉÏʽ£º
$$ nLn(0) = - (n - 1)L{n-2}(0) $$
ÓÉ´Ë¿ÉÒÔ»ñµÃµÝ¹é¹«Ê½£º
$$ Ln(0) = -\frac{n - 1}{n} L{n-2}(0) $$
Èç¹ûÒÑÖª $L0(0) = 1$ ºÍ $L1(0) = 0$£¬Ôò¿ÉÒÔÀûÓõݹ鹫ʽÖð²½ÅÌËã $L_n(0)$ µÄÖµ¡£ÀýÈ磺
ÀàËƵأ¬¿ÉÒÔ¼ÌÐøÅÌËã¸ü¸ß´ÎµÄÀÕÈõ¶àÏîʽÔÚ $x=0$ ´¦µÄÖµ¡£
ÎÒÃÇϵͳµÄ½éÉÜÁËÀÕÈõ¶àÏîʽµÄһϵÁлùÌìÐÔÖÊ£¬°üÀ¨Çкϴó¶¼ÀÕÈõ·½³Ì¡¢Õý½»ÐÔ¡¢µÝ¹é¹Øϵ¡¢Éú³Éº¯ÊýÒÔ¼°¾ßÌåµÄµãÒªÁìÂÛµÄÓ¦Óá£Í¨¹ýÕâЩÐÔÖʺÍÒªÁ죬¿ÉÒԱ㵱ÍÁµØËãºÍÓ¦ÓÃÀÕÈõ¶àÏîʽ£¬½â¾ö¿ÆѧºÍ¹¤³ÌÁìÓòÖеÄʵ¼ÊÎÊÌâ¡£
Copyright (C) 2001- dzwww.com. All Rights Reserved
ÐÂÎÅÐÅϢЧÀÍÐí¿ÉÖ¤ - ÒôÏñÖÆÆ·³öÊéÐí¿ÉÖ¤ - ¹ã²¥µçÊÓ½ÚÄ¿ÖÆ×÷¾ÓªÐí¿ÉÖ¤ - ÍøÂçÊÓÌýÐí¿ÉÖ¤ - ÍøÂçÎÄ»¯¾ÓªÐí¿ÉÖ¤
ɽ¶«Ê¡»¥ÁªÍø´«Ã½¼¯ÍÅÖ÷°ì ÁªÏµµç»°£º**2 Î¥·¨²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º**0
Copyright (C) 2001- Dzwww ³ICP±¸09023866ºÅ-1